

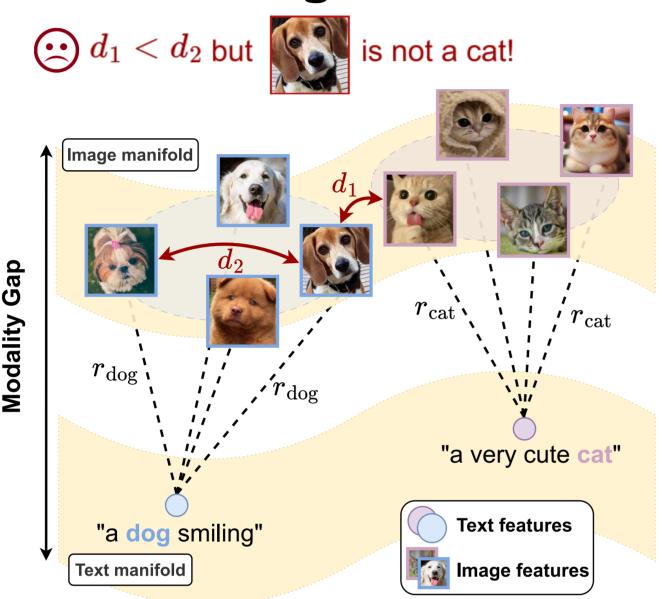
Cross the Gap: Exposing CLIP Intra-modal misalignment Via Modality Inversion

*Marco Mistretta, *Alberto Baldrati, *Lorenzo Agnolucci, Marco Bertini, Andrew D. Bagdanov

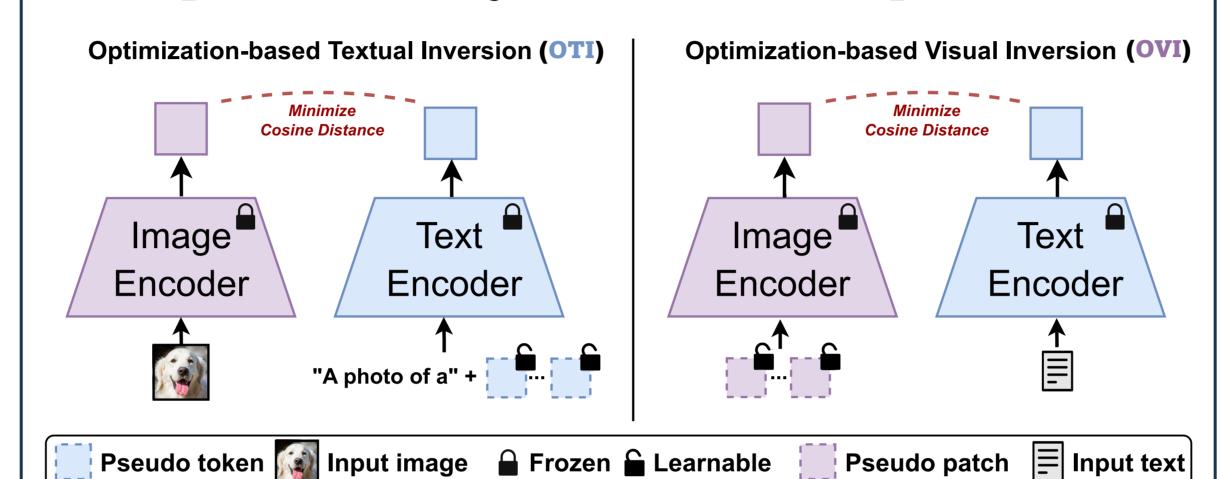
Better STOP using CLIP for image-to-image or text-to-text similarity comparisons. Intra-modal similarities are suboptimal. Mind the CLIP intra-modal misalignment!

−1. Defining CLIP Intra-Modal Misalignment-

- □ VLMs (like **CLIP**) are used off-the-shelf for a variety of applications
- ☐ However, CLIP pretraining aligns *only* image-text pairs, and does not ensure that two similar images (or texts) are close to each other
- ☐ An image of a dog might end up closer to an image of a cat than to another dog.
- ☐ We call this overseen issue intra-modal misalignment



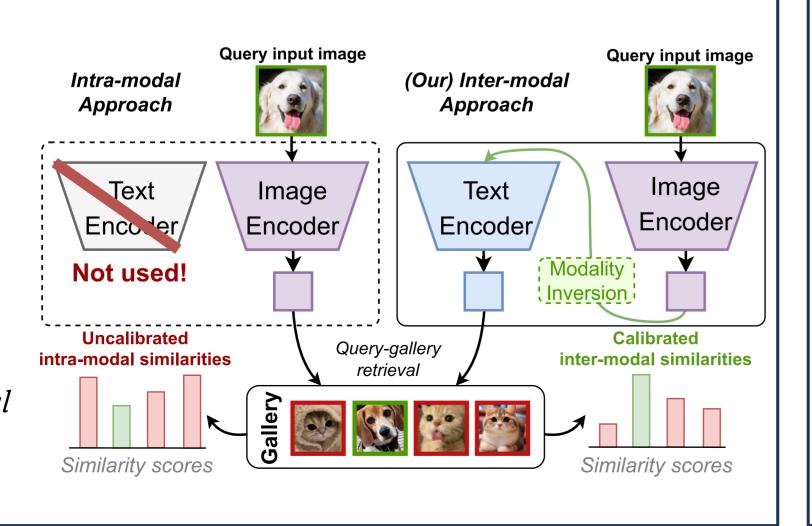
-3. Proposed modality inversion techniques



Both inversion techniques are single-feature level, freeze the backbones, and optimize a few parameters by minimizing the *cosine distance* with the input feature

2. How to go from intra-modal to inter modal?

- ☐ CLIP features are widely used for **intra-modal comparisons** (e.g., image-to-image retrieval or text-to-text retrieval)
- ☐ We argue that common intra-modal methods result in uncalibrated similarities
- We introduce the usage of modality inversion techniques to approach any intra-modal task inter-modally
- ☐ This shouldn't help unless *intra-modal misalignment* is real!
- ☐ We show that *inter-modal similarities* outperform intra-modal baselines



-4. Approach intra-modal task intermodally-

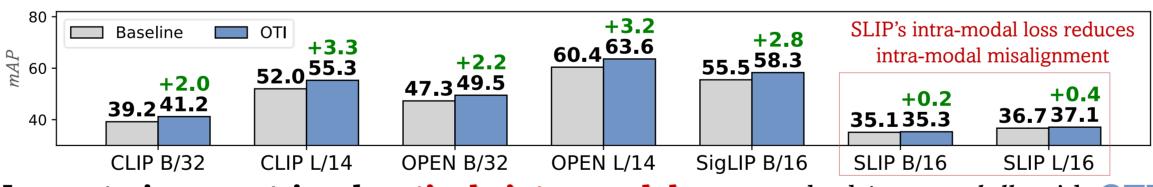
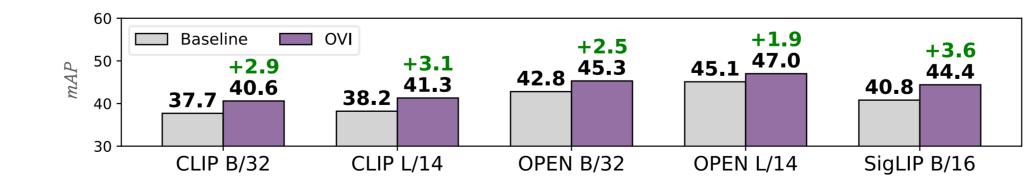
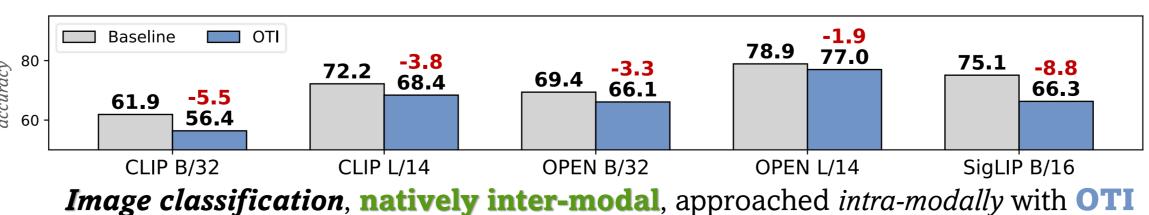


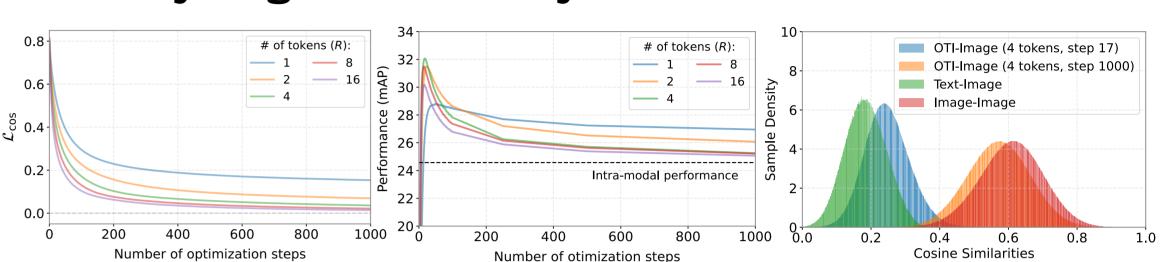
Image-to-image retrieval, natively intra-modal, approached inter-modally with OTI



Text-to-text retrieval, natively intra-modal, approached inter-modally with OVI



 $oxedsymbol{-}5.$ Analyzing the Modality Inversion $oxedsymbol{-}$



Performance peaks early during optimization, before *features drift* toward the native manifold. While a lower number of learnable tokens (R = 1) offers more robustness, larger values accelerate convergence and improve peak performance.

$oldsymbol{-}$ 6. Role of the modality gap-

- We fine-tune CLIP on COCO using different temperatures, preserving and closing the modality gap
- ☐ Modality inversion benefit correlates with the magnitude of the modality gap

Algorithm 1 OTI

Fine-tuning Temperature	Inter modal	CUB	SOP	$\mathcal{R} ext{Oxfo}$	\mathcal{R} Paris	Cars	Averag
$ au=1 \ (no\ gap)$	X ✓	15.9 14.0	23.7 20.4	29.3 26.7	46.6 43.1	19.3 17.4	27.0 24.2
$\tau = 0.01$ (CLIP gap)	X ✓	24.0 24.1	35.0 35.2	43.1 44.0	68.6 70.2	25.7 27.6	39.3 40.2

─7. OTI and **OVI** pseudo-algorithms & Source Code!—

Algorithm 2 OVI

1: Input: Image I , number of pseudo-tokens R ,
number of optimization steps S
2: Initialize $v^* = \{v_1^*, v_2^*, \dots, v_R^*\}$
3: Extract image features: $\psi_I = f_{\theta}(I)$
4: for $s = 1$ to S do
5: Form $\overline{Y}_{v^*} = [E_v(\text{``a photo of''}), v^*]$
6: Extract text features: $\psi_T = g_{\phi}(\overline{Y}_{v^*})$
7: Compute loss: $\mathcal{L}_{\cos} = 1 - \cos(\psi_I, \psi_T)$
8: Update v^* to minimize \mathcal{L}_{\cos}
9: end for
10: Output: OTI-inverted features $\psi_T = g_{\phi}(\overline{Y}_{v^*})$

1: Input: Text Y , number of pseudo-patches P ,
number of optimization steps S
2: Initialize $w^* = \{w_1^*, w_2^*, \dots, w_P^*\}$
3: Extract text features: $\psi_T = g_{\phi}(E_v(Y))$
4: for $s=1$ to S do
5: Form input \bar{I}_{w^*} using ??
6: Extract image features: $\psi_I = f_{\theta}(\bar{I}_{w^*})$
7: Compute loss: $\mathcal{L}_{\cos} = 1 - \cos(\psi_I, \psi_T)$
8: Update w^* to minimize \mathcal{L}_{\cos}
9: end for
10: Output: OVI-inverted features $\psi_I = f_{\theta}(\bar{I}_{w^*})$

The code implementing **OTI** and **OVI** with all the different backbones and on all the evaluated datasets is finally available. Feel free to explore, use and contribute!

